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This paper applies the test field model developed by Kraichnan to the study of an 
isotropic, passive scalar contaminant convected by decaying isotropic turbulence. 
Test field model predictions of scalar and velocity dissipation spectra at large Rey- 
nolds and PBclet numbers are shown to be in excellent agreement with atmospheric 
data, after intrinsic scale constants in the model are adjusted to give valid inertial 
range coefficients. Theoretical values for the inertial range coefficients are obtained for 
large and small Prandtl numbers. Simulation results for velocity and scalar energy, 
dissipation and transfer spectra and second- and third-order velocity, scalar and 
velocity-scalar correlations at moderate Reynolds and PBclet numbers are shown to 
agree moderately well with heated grid turbulence data. Simulation results are pre- 
sented for the normalized decay rates of the scalar and velocity dissipation rates and 
for the ratio of the velocity to scalar decay time scales; these quantities are employed 
in second-order modelling. In  the self-similar decay mode the simulations yield unity 
levels of the normalized decay rates and of the ratio of decay time scales over the 
moderate range of Reynolds and Prandtl numbers investigated. These results are 
compared with data from heated grid turbulence experiments and are discussed in 
the light of asymptotic decay of concomitant scalar and velocity fields. 

1. Introduction 
This paper applies the test field model (TFM) (Kraichnan 1971) to the study of an 

isotropic, passive scalar contaminant convected by decaying isotropic turbulence. 
Our motivation is twofold; first, to ascertain the accuracy of the theory by a com- 
parison of its predictions to experiments a t  both moderate and large Reynolds and 
PBclet numbers, and second, to extract from self-similar decay studies certain normal- 
ized decay rates of use in single point closures (Lumley 1970; Lumley & Newman 
1977). We compare the theory’s predictions to both the moderate Reynolds number 
(R, N 35) experiments of Yeh & Van Atta (1973) and to the large Reynolds number 
atmospheric measurements of Champagne et al. (1977). The comparison includes an 
analysis which yields theoretical values for the inertial range coefficients for large and 
small Prandtl numbers, as well as one-dimensional spectral profiles in the dissipation 
range. The normalized decay rates obtained for self-similar decay include those 
0022-1120/79/4261-7020 $02.00 @ 1979 Cambridge University Press 

6-2 



164 G. R. Newman and J. R. H e m k g  

coefficients relating the decay rate of dissipation to dissipation and energy for both the 
velocity and scalar fields, 

Section 2 records the TFM equations for the velocity and the scalar fields. The 
prescription is taken from Kraichnan (1971); the velocity field equations are recorded 
there, and at the end of this section is stated a prescription for the scalar field. The 
latter represents a Markovian scalar theory in which the time scale for the scalar 
variance is the time scale of the test field’s compressive component. A brief develop- 
ment of the scalar TFM and a discussion of its consistency properties are presented in 
the appendix. 

Section 3 gives the comparison of theory and experiments of f e h  & Van Atta (1973) 
for moderate Reynolds number (R, N 35). The comparison includes energy and 
dissipation spectra, transfer functions, and second- and third-order velocity-temperrt- 
ture correlations. Section 4 contains an examination of the predictions of theory for 
very large Reynolds number flows. We include here a determination of the scalar 
inertial range coefficient, as well as a comparison of dissipation spectra to the data of 
Champagne et al. (1977). Finally, § 5 discusses the predictions of the TFM for the 
normalized decay rates, $ = iq2/e2 and $e = g , P / e j ,  and for the ratio of velocity to 
scalar decay time scales, r = ( ? / E ) / ( 8 2 / E e ) ,  which are employed in single-point closures. 
Here, B and €6 are dissipation of kinetic energy ( =  442) and one half of the scalar 
variance = 8%: i.e. - 

au, aui a0 ae 
ax, axj ax, axit 

E = v- - and c e = y - -  

where v and y are respectively the velocity and scalar molecular diffusivities. 
The results of this investigation indicate the TFM to be in good agreement with 

the large Reynolds number observations, but in only moderate agreement with the 
R, N 35 data of Yeh & Van Atta (1973). At large Reynolds number, we obtain 
excellent agreement with the observations of Champagne et al. (1977) for both scalar 
and velocity dissipation functions, provided the empirical constants of the TFM are 
adjusted to give valid inertial range coefficients. With regard to the disagreement with 
the data of Yeh & Van Atta, we tentatively conclude that the TFM has certain 
inadequacies apparent at  moderate Reynolds number which are not explicit at very 
large R,. A comparison of accurate numerical simulation with theory is needed here 
to accurately fix theoretical errors. Values of the velocity and scalar dissipation rates 
computed for self-similar decay at small and moderate R, are approximately 4.0. 
Also the ratio $I$@ and the time scale ratio are approximately unity. The only 
unusual feature of the present calculations is that we find no evidence in the TFM 
for a final period of decay. 

2. Theory 
Kinematical considerations 

Consider a passive scalar, O(x, t ) ,  convected by an incompressible velocity field, 
v(x, t ) ,  whose statistical properties are homogeneous and isotropic. We seek governing 
equations for ensemble averages of the second-order moments of (v, e), 

(2.1) 

(2.2) 

Ui,(X, t ;  x‘, t ’ )  = (Vi(X, t )  Vj(X’, t ’ ) ) ,  

o(x, t ;  XI, t ’ )  = (e(x, t )  e(x‘, t ’ ) ) ,  
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given the equations of motion for (v, 8)  : 

( a p t  + V .  v )  v = - v p  - VVZV,  (2.3) 

and ( a / a t + v . v ) e  = - p e .  (2-4) 

The statistical turbulence theory is most conveniently formulated in terms of the 
spectral representation of (2.1) and (2.2). Accordingly, we decompose (v, 19) into Fourier 
modes ( v ( k ) ,  B(k)), defined by 

(ei(x,  t ) ,  8 (x ,  t ) )  = X exp (ik. x)(vi(k, t ) ,  W, t ) ) .  
It 

Here, k = (.in,fm, & I )  (2n/9) ,  (n, m, I )  = ( - 00, . . . , - 1, 0,1 ,2 ,  . . . , a), a n d 9  is an arbi- 
trary length much larger than any physically relevant length scale. Corresponding 
to the two-point moments (2.1) and (2.2) are the modal velocity and scalar variances 
spectra, 

( q j ( k , t , t ' ) ,  O(k,t , t '))  = d ( x - x ) e x p ( i k .  ( x - x ' ) )  (U, j (x ,x') ,O(x,x')) ,  (2 .5)  

which are the principal ingredients of the statistical theory. We recall that, for isotropic 

s 
turbulence, 

q j ( k ,  t ,  t') = +(Sij - ki kj/k2) U(k ,  t ,  t ') ,  

where U ( k ,  t ,  t ' )  is related to the kinetic energy spectrum by 

E(k, t )  = +(4nk2) U(k, t ,  t ) .  (2.7) 

We define an analogous &energy by 

E,(k, t )  = 4(4nk2) O(k,  t ,  t ) .  (2.8) 

The total kinetic energy per unit mass is then 

i p  = &(V2(X,t)) = dkE(k,t) ,  
10- 

and similarly 

(2.9) 

(2.10) 

In (2.9), and hereafter, we denote by (?)* the volume-average r.m.8. speed, which for 
homogeneous flows is identical to the ensemble r.m.8. average of v. We record here for 
subsequent reference the one-dimensional velocity and scalar spectra : 

Pa0 

~ e ( k i )  = J k: ~ P E ~ ( P ) / P ,  

and note that, in terms of these one-dimensional spectra, 

(2.11) 

(2.12) 

(2.14) 
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Further, the dissipation of kinetic energy and 8-energy are 
- 

-&q2 = -v(v.  (V'V)) = 1 5 ~  k?dk,$,(k,) = 2~ 

m -@ = -y(8V28) = 3 y 1  k~dE,$,(k,) = 2y 
-m 

The testjeld model ( T F M )  
The test field model (TFM) for U(k ,  t ,  t ' )  is (Kraichnan 1971) 

(a/at  + vk2 + r , ( k ) )  U ( k ,  t ,  t ' )  = 0 ( t  =I= t ' ) ,  
c 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

In (2.18)) (2.21) and (2.22), the integrals over (dpdq)  extend over all (p ,q)  such that 
( k ,  p ,  q )  can form a triangle (k = p + q).  Zero initial values for D, D8 and Dc signify that 
the initial statistics of v are multivariate Gaussian. 

The key equation here is (2.18). Its right-hand side consists of an input term, which 
gives the change of U ( k )  from other modes (p, q), and an output term, which gives the 
drain on mode k because of its interaction with other modes, q. The coefficient, 
B(k ,p ,  q )  [(2.19)] stems from the non-linearity of the Navier-Stokes equation (2.3). 
The formal structure of (2.18) is quite similar to the quasi-normal approximation; to 
obtain the latter, we need only replace D(k,p ,  q)  (U(p ,  t )  U(q,  t )  - U ( k ,  t )  U(q,  t ) )  by 

/:dB ( U ( p ,  s )  U(q,  s)  - U(k ,  5 )  U(q,  s ) ) ,  suppressing for the moment the viscous dissipa- 

tion. The time scale L)(k,p, q )  may be thought of as the mean duration of the distortion 
process, which changes energy in mode k.  Physically, it  is the r.m.5. strain by scales 
larger than 2n/k .  Mathematically, (2.20)-( 2.25) give evolution equations for the triple 
moment time scale D(k,  p ,  q) .  Their basic ingredients are two relaxation rates, ys(k) ,  
and qC(k), which pertain to a test field which suffers pure convection (no pressure 
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forces) by v(x, t ) .  r8 (k )  gives the rate at  which interactions with v(x, t )  induce solenoidal 
components of the test field to be converted into the compressive mode, while qc(k) 
gives the rate a t  which such an interaction induces the compressive mode to be 
transformed into solenoidal modes. The empirical parameter, g, in (2.21) and (2.22) 
gives the efficacity of the above algorithm in distorting fluid elements. It may be 
fixed by comparing the inertial range prediction of the TFM to experiment 

(E(k)  = 1.34&Q/k4) 

(Leith & Kraichnan 1972). The factor 2 in (2.22) stems from the fact that for isotropic 
turbulence there are two equivalent solenoidal modes, but only one compressive mode. 

The basic idea behind the TFM is that it is the pressure force that limits the duration 
of straining of eddies of size 27r/k. The time scale for such a distortion is measured by 
the effects of removing the pressure force; in other words, examining what the pressure 
force prevents. 

The TFM constitutes a Markovian, modified perturbation expansion for the (second 
order) statistics of the Navier-Stokes equations. By this we mean that the nonlinear 
forces that produce Eulerian accelerations are modelled to zeroth order by white noise, 
and the parameters of the model force field are determined through an examination 
of a self-consistent perturbation theory. The white noise modelling explains why all 
time arguments in (2.18)-(2.25) refer to the current time, t .  For further details, we 
refer the interested reader to Kraichnan (197 1). 

For the scalar field, O ( k ,  t ,  t ' ) ,  the TFM employed here is 

( a / a t + r k 2 + r ( k ) ) O ( k , t 7 t ' )  = 0 (t * t ' ) ,  (2.26) 

( 4 d p  + yk2) O(k , t , t )  = dpdqB@(k,p,q) D W , p , q )  U(q , t , t )  (@(P,t , t)  - @(k, t , t ) ) ,  (2.27) L 
d W k , p ,  q)/dt = 1 - (gfxrC(k) + rC(p ) )  + r"(a) + Y ( k 2  + P 2 )  + ?I2) De(k,P, !I), 

where De(k,p,qlt  = 0) = 0 (2.28) 

end Be(k, P, q)  = 77 sin2 (P, q) PSQ/k .  (2.29) 

The equation for ~ ( k ,  t )  is (A 7) of the appendix, provided the triple moment relaxation 
factor in (A 7) (i.e.: H ( k , p , q ) )  is replaced by De(k,p,q)  as given by (A 16). These 
equations are derived (see appendix) by an application of the Markovian, modified 
perturbation theory - cited above - to the scalar field, with the provision that the 
relaxation time for the scalar variance is qC(k)ge,  where ge is an adjustable parameter 
for 8, in the same manner that g, in (2.21) and (2.22) is for V. Thus, we should adjust 
gi  so that $e(k,), as given by (2.12), is 0 . 4 x d k - 4 ,  if the theory is to be matched to 
experiments on Prandtl number unity fluids (Champagne et al. 1977). We postpone a 
full discussion of the large Reynolds number behaviour of this spectrum until $ 4 ,  and 
here only quote the value that gives acceptable values for $0 : 

go = 0-5, (2.30) 

g, = 1.5. (2.31) 

The identification of yc(k) as the time scale for the relaxation of the 8-field triple 
moments results from the fact that 88/axi is the test field (rather than 8 itself) upon 
which the TFM algorithm is to be applied. 
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3. Moderate Reynolds number results 
Introduction 

In  this section we compare TFM simulation results with the experimental data of 
Yeh & Van Atta (1973) which pertains to scalar decay in grid turbulence. We shall 
compare energy, dissipation and transfer spectra as well as second and third-order 
velocity, scalar and velocity-scalar correlations. We noted above that the TFM pre- 
scriptions are augmented by the adjustable factors gv and which provide a means 
of tuning the characteristic memory times which control the build-up of the triple 
moments. We shall determine values for these coefficients in J 4 by fitting theory 
predictions of one-dimensional scalar and velocity spectra to large Reynolds number 
(atmospheric) spectra in the inertial wavenumber range. We have utilized the values 
of gv and ge given by the inertial range comparisons in the simulations presented here; 
we discuss briefly the implications of altering these values in J 6 .  Before presenting the 
data-theory comparisons, we first describe the numerical techniques and initial con- 
ditions employed in our TFM simulations. 

With the TFM given above, we must solve prognostic equations for U ,  D,  Dc, 08, 
0 and De along with diagnostic equations for qs and T ~ .  Our numerical integration 
procedures follow those of Herring & Kraichnan (1972). The wavenumber domain is 
discretized into an interpolating set, {k}&, of 35 points which span kE [0,  1001, and 
the {k}i are distributed with maximum point density a t  the low wavenumbers so as to 
provide good representations of velocity and scalar spectra. The continuous TFM 
equations are evaluated on this discrete set of wavenumbers, and the time stepping for 
the prognostic equations is performed with two-step predictor corrector marching on 
the set (k}i. The p ,  q integrations in the model equations are effected by employing 
Gaussian quadrature on cubic spline representations of the integrands. As noted, the 
p-qintegration domain spans allowed(p,q)such that (k,p,q)form a triangle(k = p + q), 
and here the (p-q) domain is truncated for a fixed ki using the scheme of Herring & 
Kraichnan ( 1972) which guarantees energy conservation. 

The initial states of the scalar and velocity fields in our simulations are represented 
by chosen forms for the three-dimensional spectra, E(k,  0) and E,(k, 0 ) ,  and by zero 
spectral transfer. The following form for the initial spectra (where H denotes either 
E or E,) was employed in the predictions discussed in this section: 

H ( K ,  0) = Ake-klB, A,  B = constant. (3.1) 

The spectral form (3.1) evolves rapidly into spectra which are very nearly identically 
self-preserving. We shall further address the issue of initialization in Q 6. 

We may assess the overall accuracy of our numerical scheme by examining the 
energy balance equations for the velocity and scalar fields given above in (2.15) and 
(2.16). By numerically differentiating the data from our TFM simulations we find 
that the error quantities . 

l ~ / ( 2 € )  - 1 I 1 @/(2Ee) - 1 I , (3.2) 

are less than 1 x at each step for all of our simulations. Our simulations cover a 
dimensional time range from 0.0 to a maximum of 3.0, and thus with the results 
(3.2) we deduce that the cumulative error growth in the balance equations is small. 
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Comparison with experiments 

We now compare predictions with the heated grid turbulence data of Yeh & Van Atta 
(1973). We shall discuss their results in the light of recent work by Warhaft & Lumley 
(1978) in $ 5 .  The scalar contaminant in the experiments of Yeh & Van Atta (1973) 
was temperature, and the thermal fluctuations were input into their laboratory flow 
by heating the grid which was employed to generate the turbulent flow field. The 
thermal fluctuations were relatively small so that buoyancy effects were negligible 
and hence the temperature contaminant behaved passively. Decaying heated grid 
turbulence is known to exhibit approximate isotropy of the flow fields and to exhibit 
approximate partial self-preservation of various turbulence quantities when the 
quantities are normalized with appropriate local variables. We shall compare normal- 
ized experimental and predicted spectra. However, after Herring & Kraichnan ( 1972), 
we note that it is difficult to assess to what extent the period of temporal evolution 
predicted in our simulations corresponds to that of the experiments. Our simulations 
march forward in time from chosen initial spectral forms, whereas the grid turbulence 
fields evolve from coalescing heated wakes (which are initiated behind the grid bars) 
and hence presumably have markedly different initial spectra. On the other hand, 
we compare approximately self-preserving forms of the simulation results and the 
data, and these results may well be fairly universal in nature. 

To effect simulation of the Yeh & Van Atta (1973) flow, we have simply reproduced 
their value of Prandtl number ( v / y  = 0.725) and closely matched the values of RA 
(the turbulence Reynolds number) and PA which were exhibited in their flow at the 
mid-point tunnel position x / M  = 35 (where M is the grid mesh size), where we define 
RA and PA as 

RA = ulh/v,  PA = u'h,/y, U' = (p/3)4, (3.3) 

A and A, are the velocity and the scalar Taylor microscales given by 

h = (5V?/€)+ = ( 5 ~ 0 m E ( k , t ) d k / S ~ k 2 E ( k , t ) d k )  4 , 
0 

(3.4) 

The values of (RA, PA) from Yeh & Van Atta (1973) are (35.2, 32.5) while the values 
from our simulation are (37.1, 32.7). These 'asymptotic' (RA, PA) simulation values 
correspond to a dimensional evolution time of 1.3, but we note that both RA and PA 
change very slowly with time in any TFM simulation after self-preservation is achieved. 

In  figures 1-12 we compare our simulation results with the data of Yeh & Van Atta 
(1973) for the following normalized quantities (where we now drop explicit time 
dependence) : E(k) ,  T(k)  = the three-dimensional velocity transfer spectrum, k2E(k) = 
the three-dimensional velocity dissipation spectrum, R(u, u )  = the double velocity 
correlation, R(uu, u )  = the triple velocity correlation, E,(k), T'(k) = the three- 
dimensional scalar transfer spectrum, k2E,( k )  = the three-dimensional scalar dis- 
sipation spectrum, R(8, 8 )  Z E  the double scalar correlation and R(u8, 8 )  = the triple 
velocity-scalar correlation. The defining relations for the transfer spectra and the 
double and triple correlations are given below. The simulation spectra presented 
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FIUURE 1. Normalized three-dimensional velocity energy spectra. -, our TFM prediction; 
0, data of Yeh & Van Attct (1973). 

klks 

correspond to a dimensional evolution time of t = 1-3, however, they represent nearly 
universal shapes for all t such that self-preservation is closely maintained. The data 
spectra pertain to the mid-point tunnel position of x / M  = 35. We utilize local values 
of ks = (e/v3)* and v, E (ev)f (respectively, the inverse of the Kolmogorov length male 
and the Kolmogorov velocity scale) to scale many of the spectra. This small scale 
normalization collapses the predicted spectra into nearly self-preserving forms over 
the entire range of wavenumbers; whereas the small scale normalization collapses 
only the high wavenumber regions of the data energy and transfer spectra. The 
data dissipation spectra collapse well over the whole wavenumber range however. The 
normalization of scalar spectral quantities with the velocity quantities k, and v, 
follows Yeh & Van Atta (1973). We note that this scaling is strictly valid only for the 
case of unity Prandtl number. For cases with significant departures from unity 
Prandtl number, scalar spectra must be normalized with scales relevant to the 
contaminant field. We have employed such scaling in our presentation of the scalar 
correlation quantities and of the large scale normalization of the scalar energy spectra. 

Figures 1 and 2 show the data and predicted E(k)  spectra normalized, respectively, 
with small scale and large scale normalization, while figures 3 and 4 show the corres- 
ponding normalized Ee( k) spectra. The large scale normalization employed serves to  
collapse the low wavenumber regions of the spectra. The agreement between theory 
and experiment is seen to be quite good for both E ( k )  and E,(k) a t  low and high wave- 
numbers. The agreement a t  moderate wavenumbers is good for E(k)  and fair for Ee(k). 
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k L  

FIGURE 2. Normalized three-dimensional velocity energy spectra. 
L_ , our TFM prediction; 0, data of Yeh & Van Atta (1973). 

We note that both the computed and empirical spectra exhibit the quality that Ee(k)  
peaks a t  a lower wavenumber than E ( k ) ,  and we shall consider this behaviour further 
in Q 5. 

Figures 5 and 6 show, respectively, the three-dimensional velocity and scalar 
transfer spectra, T(k)  and T,(k),  which we now define, T ( k )  and Te(k) represent, 
respectively, the transfer of energy and scalar variance to wavenumber k from all other 
wavenumbers. The transfer spectra serve as forcing functions in the corresponding 
spectral balance equations for the three-dimensional energy spectra which we may 
write as 

( d / d t +  2vk2) E ( k ,  t )  = T ( k ,  t ) ,  

( d /d t  + 2yk2)  Ee(k, t )  = Te(k, t ) .  (3.7) 

We may form (3.6) and (3.7) from our TFM by multiplying (2 .18)  and (2.27) by 4nk' 
SO that T(k)  and Te(k) denote the product of 4nk2 and the nonlinear interaction terms 
on the right-hand sides of (2.18) and (2.27), respectively. The transfer spectra for the 
TFM may be shown to satisfy energy conservation by nonlinear interaction which is 
expressed by the relations 

r m  f m  
J 0 T ( k ) d k  = J 0 Te(k)dk  = 0. 

Relations (3.8) are satisfied by the transfer spectra associated with truncated-wave- 
number representations of the scalar and velocity equations of motion for isotropic 
scalar turbulence. 
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FIGURE 3. Normalized three-dimensional scalar energy spectra. -, 
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FIGURE 5. Normalized three-dimensional velocity transfer spectra. -, our TFM prediction ; 
-_- , Yeh & Van Atta (1973) directly meesured data; ------ , Yeh & Van Atta (1973) spectral 
balancte results. 
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 FIG^ 6. Normalized three-dimensional scalar transfer spectra. -, our TFM prediction ; 
-_- , Yeh & Van Atta (1973) directly measured data; ------ , Yeh & Van Atta (1973) spectral 
balance results. 
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FIGURE 7. Normalized three-dimensional velocity dissipation spectra. -, our TFM 
prediction; 0, data of Yeh & Van Atta (1973). 

From figures 5 and 6 we observe that the agreement between simulation and data 
profiles of T ( k )  and T,(k) is good at  the high wavenumbers. Agreement a t  the low 
wavenumbers is not as good, but direct comparison at  these wavenumbers is not too 
enlightening since the low wavenumber portions of the data curves are presumably 
not self-preserving under the small scale normalization employed. In  addition, as 
indicated in figures 5 and 6, Yeh & Van Atta (1973) could not accurately map the entire 
negative regions of T(k)  and T,(k) by direct measurements. We have included for 
comparison in the figures the profiles of T(k)  and T,(k) which they determined in- 
directly using the spectral balance equations (3.6) and (3.7). We note that Yeh & 
Van Atta (1973) indicate that the energy conservation properties (3.8) are not satisfied 
identically by their directly measured data. Curves with a positive area contribution 
exceed the negative area by 5(! yo for T,(k), while curves with a negative area contribu- 
tion exceed the positive area by 10 % for T ( k ) .  

The velocity and scalar dissipation spectra are shown in figures 7 and 8. The agree- 
ment between simulation and data is fair with k2E,(k) somewhat better reproduced 
at high wavenumbers and k2E(k) somewhat better reproduced at the lower wavenum- 
bers. The greatest disparities between theory and experiment occur in the region of 
the spectral peaks. On the other hand, we note that Yeh & Van Atta (1973) compare 
their velocity dissipation spectrum with spectra of Uberoi (1963) (with R, N 70) and 
Van Atta & Chen (1969) (with R, 2: 35). It can be seen from their comparison figure 
that the Uberoi (1963) values agree well with those of Yeh & Van Atta (1973) while 
the values of Van Atta & Chen (1969) are lower than those of Yeh & Van Atta (1973) 
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FIGURE 8. Normalized three-dimensional scalar dissipation spectra. -, our TFM prediction ; 
0, data of Yeh & Van Atta (1973). 

over the entire spectrum. In fact, the peak value of the Van Atta & Chen (1969) 
dissipation spectrum [where their turbulence Reynolds number is almost identical 
with that of Yeh & Van Atta (1973)l is nearly equal to ours. In  addition, we may 
consider the areas enclosed by the dissipation spectra. With the normalization em- 
ployed in figures 7 and 8 the areas enclosed by the velocity and scalar dissipation 
spectra should both be unity, Indeed, we find that the areas enclosed by the TFM 
spectra (including tail regions not shown on the plots) are nearly identically unity 
and that the area enclosed by the velocity dissipation spectrum of Yeh & Van Atta 
(1973) over the reported range, k / k s E  (O.O,l.O), is approximately 0.98. On the other 
hand, the area enclosed by Yeh & Van Atta's (1973) scalar dissipation spectrum over 
the reported wavenumber range exceeds unity by about log/,, and this fact may 
explain in part the noted difference between the predicted and experimental scalar 
dissipation spectral peak values. 

Finally, we compare in figures (9 and 10) and (11 and 12) longitudinal second-order 
and third-order correlations, respectively. We define the longitudinal second-order 
correlations as 

R(u, u)  (4 = ( N X )  u(x + d))/(u2(x)>, 
w, 8 )  (4 = (W) m + d))/<82(x)), 

and we further define the longitudinal third-order correlations as 

R(uu, u)  (4 = (u2(x) u(x + d))/(m))4 

R(u8, 0)  (4 = (u(x) 8(x) @(x + d))/<u2(x))*(~2(x)>. 
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FIGURE 9. Longitudinal second-order velocity correlations. - , our TFM prediction; 
--- , data of Yeh & Van Atta (1973). 
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For isotropic turbulence all four wrrelations are functions of only the separation 
distance magnitude d, d = (didi)*. We assume here that the direction of d points 
along the direction of the velocity component u. The empirical data are presented in 
the original paper as functions of a temporal separation variable, whereas we present 
them as functions of d by making recourse to Taylor's hypothesis. The correlation 
curves for the simulations are determined with the following formulae which are 
valid for isotropic turbulence (Monin & Yaglom 1975): 

~ ( u ,  u)  (d ) = - 2/<u2(x))Sm [cos (kd)/(kd)2-  sin (M)/(M)~I ~ ( k )  dk, (3.9) 
0 

+3co~(kd)/(kd)~-3sin(kd)/(kd)~]T(k)dk/k, (3.11) 

[cos (kd)/(kd) - sin ( ~ ) / ( ~ ) 2 1  To(k) dk/k .  s, (3.12) 
We see from the correlation formulae that R(u, u) and R(8,8) are even functions of the 
separation d while R(uu, u) and R(u8, 8) are odd functions of d. 

Figure 9 shows good agreement between prediction and measurement for the second- 
order velocity correlation, R(u, u) ( d ) ,  whereas figure 10 shows moderate agreement 
for the second-order scalar correlation R(8, 0) (d ) .  Figure 11 gives profiles of R(u8, 8) 
and R(8, u0), and moderate agreement between simulation and empirical profiles is 
evidenced a t  the smaller values of non-dimensional separation distance. The crossing 
of the R(u8,6) and R(8, u8) data curves a t  the larger separations is not reproduced by 
the simulation curves, however. Finally, figure 12 shows only fair agreement between 
simulation and data profiles of R(uu, u )  and R(u, uu). The data profiles are not anti- 
symmetrical, however, and the R(uu, u)  data curve is somewhat better reproduced by 
simulation than the R(u, uu) curve. 

R(u8, 8)  (d )  = 1/(u2(x))* (~z(x)) 

4. Large Reynolds number results 
Introduction 

We now discuss the TFM for large Reynolds number flows, in which an appreciable 
inertial range exists. There are two issues here: how well does the TFM work for 
inertial range wavenumbers, and what is its accuracy in the dissipation range? With 
regard to the first issue, we shall seek values for (gu, g o )  which fit experimental inertial 
range spectra (q5,,(kl) and q5e(k,), (2.11) and (2.12)). The correctness of the qualitative 
aspects of the TFM inertial range is assured by the Lagrangian structure of the theory. 
We then ask how accurate is the theory for the (universal) dissipation spectra, 
k2 #,(k) and k2 $e(k) .  The experiments to which we compare theoretical results are the 
recent observations in the planetary boundary layer reported by Champagne et al. 
(1977). Having thus fixed (g,,, go) for a Prandtl number unity fluid (0.7), and examined 
the theory's accuracy in the dissipation range, we then examine theoretical predic- 
tions for t h e  viscous-convective inertial range a t  large Prandtl number, and the 
inertial-diffusive range for very small Prandtl number fluids. 
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FIGURE 1 1. Longitudinal third-order mixed velocity- scalar correlations. - , our TFM 
predictions; A, 0, data of Yeh & Van Atta (1973). 

Convective inertial range 

Calculations of the inertial range coefficients for Prandtl number unity proceed by 
methods suggested by Kraichnan (1966) and Leith & Kraichnan (1972). We consider 
stationary turbulence on a trucated wavenumber span (ko, k,) maintained by random 
stirring forces a t  small k so that both E(k) and E,(k) are proportional to k4. We 
further suppose that the Reynolds (and PQclet) numbers are so large that direct effects 
of viscosity and conductivity may be entirely ignored. Then if C is the Kolmogomv 
constant, p3 the corresponding Oboukhov-Corrsin constant and ke is an inertial range 
wavenumber, 

(4.1) 
ks 

- 1 = c+s, dkT,(k) ,  

Here, T, is (4nk2) times the right-hand side of (2.18) if U(k)  = k - 9  is used in ite 
evaluation, and if further D(k ,p ,  q)  is evaluated from (2.20) with dD(k ,p ,  q)/dt = 0,  
and the above U ( k )  spectrum is used to specify q5(k)  and qc(k) .  Similarly, T,(k) is (47rP) 
times the right-hand side of (2.27) if U ( k )  and O(k) are both k+, and if D'(k,p,q) 
is specified in analogy with D(k,p,q).  This prescription calls for solving a pair of 
equations for qs and qc for U ( k )  = k - Y .  Physically the calculation is based on the 
observation that if a k-* spectrum is maintained by random stirring forces on 8 

truncated wavenumber span (ko, k,) then these forces will be non-vanishing only near 
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FIQURE 12. Longitudinal third-order velocity correlations. - , our TFM predictions; 
A, n, data of Yeh & Van Atta. (1973). 

k, and k,. If k,  < k, < k,, T ( k , )  0 ,  and C may be evaluated by equating the flux 
of energy out of the small wavenumber region ( k  5 k,) to dissipation above k,. The 
present calculations employ k, = 0-1, k ,  = 100, which is the identical wavenumber span 
used by Leith & Kraichnan (1972) in their determination of the Kolmogorov constant, 
C (4.1). Their calculation gave 

and, as noted earlier, the choice gv = 1.5 implies G = 1.78, in good agreement with the 
ALH (Kraichnan 1966), and the large Reynolds number data of Grant, Stewart & 
Moilliet (1962). We retain this choice of gv and require a value of g, which gives 

(4-3) C = 1*348g!, 

p3 = 0.40 x 4, (4.4) 

a value in agreement with observations of Champagne et al. (1977) and others. Table 1 
shows p3(gv = 1.5, g,) for a range ofg,. We note the relative insensitivity ofp, to go, and 
observe that g$ r 0.25 is in good agreement with the data. 

We next examine the predictions of the TFM for the large Reynolds number flows, 
using the above values for gv and go. Comparisons are for the Kolmogorov’s normalized 
dissipation spectra, 

(4.5) 2(k/kA2 A7(k)/(v: ks), 

and k2A9(k) % / N .  (4-6) 

In (4.6), N is the dissipation of 6. The normalization of these spectra is such that t,he 
integral of (4.5) over all k /ks  is Q and the integral of (4.6) is Pr/3,  where Pr is the 
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 FIG^ 13. TFM normalized one-dimensional energy dissipation spectra (-) compared to 
smoothed data of Champagne et al. (1977) (----), and to the data of Williams (1974) (A). 

Prandtl number, v/y .  Figure 13 shows the comparison of computed spectra to the 
data of Champagne et al. (1977). The computed spectra had initial values specified by 
(3.1), and R, during the self-similar decay portion of the run was N 250. Our previous 
experience with decay problems indicated that the dissipation spectrum reaches its 
asymptotic profiles at R, 2 100. The comparison with the velocity data is good and in 
substantial agreement with previous calculations of Herring & Kraichnan (1972). The 
agreement with temperature data is somewhat poorer, but still such as to reproduce 
the major features of the observational spectrum. The agreement at large k/k8( 2 0.9) 
is poorest, but Champagne et al. remark that data in this region are contaminated by 
instrumental noise, so that the actual spectrum at large k/ks should be smaller than 
the displayed data by a few per cent. Just how to interpret the degree of agreement of 
a particular theory and observations is a difficult question. As remarked earlier, 
spectra (4.5) and (4.6) are normalized, so that the area under the curves is fixed. 
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FIGURE 14. TFM normalized one-dimensional scalar dissipation spectrum(-) as compared with 
the data of Champagne et al. (1977) (----), and to the data of Williams (1974) (+). 

klks  

Viscous convective range 
We now discuss the TFM's predictions for very large Prandtl number fluids. In this 
caae, the &inertial range extends far beyond the velocity dissipation range, k,, and 
we may evaluate the &transfer function [which is 4nk2 times the right-hand side of 
(2.27)] as if U(q)  were composed of a random straining field at near-zero wavenumber. 
The procedure needed is to expand U(q)  about q = 0, and retain the first non-vanish- 
ing terms (Kraichnan 1968). There results for the right-hand side of (2.27) 

which yields Batchelor's viscous-convective subrange, 

#e(k) = N (  VIE)+ C, k-l, 

where 

During the self-similar portion of the decay, our calculation yields 

CB = 1.68, (4.10) 

for large Rh( w 250). This value is slightly lower than Gibson's (1968) bound, 4 3 ,  but 
nonetheless in fair agreement with the data of Gibson (1962) and Clay (1973), who 
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obtained C ,  21 2.0. If ge = 0, which seems appropriate if gevc is interpreted strictly 
as a Lagrangian-scalar relaxation time, C ,  = 0.68 results. This unreasonably small 
value is close to Kraichnan's ALHDI estimate C ,  6 0.9. 

Finally, for completeness, we should note that for k 2 ( e / v y 2 ) f  = k,, (4 .8)  must be 
replaced by a conductive dissipation range, in which ZykW(k) is equal to (4.7). The 

(4.11) 
theory predicts 

#e(k)  = NC,(k-l + 2*kg1) exp ( - 2sk/k,) ,  

which differs from Batchelor's k-lexp ( - ( k / k e ) 2 )  prediction but is identical to Kraich- 
nan's analysis of a scalar convected by a stochastic velocity field (Kraichnan 1968). 

Conductive inertial range 
By inspection, the TFM scalar equation reduces to the (Markovian) quasi-normal 
approximation for very low Prandtl numbers. Thus, we retrieve in this limit the 
results of Batchelor, Howels & Townsend (1959). 

5. Evaluation of second-order closure quantities 
Introduction 

In  this section we evaluate normalized decay rates for the scalar and velocity dis- 
sipation rates from self-similar TFM predictions of decaying, isotropic scalar turbul- 
ence. We define these normalized decay rates as: 

- 
$ 5 -i.q2/G, $e -i.,e";/4, (5.1) 

- -  
where the single-point moments (q2, 02, E and €6 defined previously) are functions of 
time only for isotropic scalar turbulence. These normalized decay rates may be 
viewed as the second-order closure parameters for the second-moment equations 
which describe isotropic scalar turbulence. We record these equations here : 

- - 
q2 = - 2€, e= = - 2e8, (5.2) 

6 = -$€ 2 / q  2, 60 = -$os2e/P. 
-- 

We observe that if $ and $e are parameterized in terms of 92, 02, e and €8 (as is done in 
second-order modelling), then the system (5.2) forms a closed, predictive set. We shall, 
in addition, evaluate the ratio of the velocity time scale ?Is, to the scalar time scale 
02/ee, which we denote as r = (Q2/€)/(@/ee) = the time scale ratio. This quantity has 
been found to be useful in the construction of a second-order closure model for homo- 
geneous scalar turbulence (Newman, Launder & Lumley 1979). We may view the 
scales ? /e  and F/es as the time scales for significant changes in the large-scale (energy 
containing) velocity and scalar eddies, respectively. We shall compare our prediction 
results for $, $6 and r with results obtained from heated grid experiments. 

- 

Simulation results and comparison with experiments 

We have performed a number of TFM simulations of scalar decay in isotropic tur- 
bulence for various Reynolds numbers, Prandtl numbers and initial spectral shapes 
(which evolve into self-preserving forms). The Reynolds number range spanned in 
the simulations is RA = 3.2 to RA = 62.5 while the Prandtl number range is 0.01 to 10. 
In  addition, we have also varied the values of gv and 9,. We present here the results for 
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Initial 
peak wave- R ,  at Prandtl P ,  at 

Run Spectrum number ttllul number g t l h l  tnml 

3'3) 61.5 1.0 1.0 0.8 56.8 1 E 
En 6.6 

24.1 1.0 1.0 3-0 25.4 

1.0 1.0 3.0 24.3 

52.8 0.1 1.5 0.5 17-7 

36.9 4.0 1.5 0.8 74.9 

2 E" 
E,  18.2 

3 E 

4 E 

5 E 

E, 9.1 

Ee 9.1 

Ea 9.1 
TABLE 2 

$, l/ro and r from five of the simulations; the initial conditions and parameter values 
for the five simulations (which are denoted as runs 1-5) are given above in table 2. In 
the simulations presented here, we have employed g ,  = go = g with g varying from 
1.0 to 1.5, and we have utilized the spectral form given in (3.1) to initialize E ( k )  and 
Eo(k).  On the other hand, the results presented here are reprmentative of those for our 
entire set of simulations (including those in which g, + go), because the asymptotic 
behaviours of p, $, and r are very similar for the entire prediction set. Before con- 
sidering the simulation results, we first describe the general evolutionary behaviours 
exhibited in our predicted energy spectra. 

Our Simulations depict the evolution toward self-preservation of isotropic scalar 
and velocity fields which are initialized by prescribed profiles for E ( k )  and E,(k) and 
by zero initial spectral transfer. The initial energy spectra are distinguishable in 
terms of the positions of their peaks, and from table 2 we observe that E ( k )  and E J k )  
initially peak at different wavenumbers in some of the runs considered here: For the 
'well behaved ' energy spectra employed in our simulations, we may view the relation 
between the wavenumbers of the peaks in E ( k )  and E,(k) as depicting the inverse 
relation between the sizes of the large-scale (energy containing) velocity and scalar 
eddies. On the other hand, the evolution of the velocity and scalar spectra exhibit 
(qualitatively) universal characters in all of our simulations after self-preservation is 
approximately achieved. In  the self-preserving mode, all of our simulations predict 
that both E ( k )  and E,(k) peak a t  successively lower wavenumbers as time increases, 
and, further, in all of the simulations the E,(k)  spectra peak at somewhat lower 
wavenumbers than the corresponding E ( k )  spectra. We note that both of these charac- 
teristics are exhibited in the heated grid turbulence data of Yeh & Van Atta (1973). 
In real turbulence, the former characteristic reflects the fact that, although eddy 
energy is cascaded toward the higher wavenumbers, the smaller eddies decay more 
rapidly than the larger ones. We now consider the second-order parameterizations 
and the time scale ratio. 

In  figure 15 we present the results for r from runs 1-5 while in figures 16 and 17 we 
give the results for $ and $e from these runs. In these figures the quantities are given 
as functions of the dimensional simulation time, t .  The striking feature of these plots is 
that the curves for the time scale ratio appear to be asymptoting to values in the neigh- 
bourhood of r = 1, while the curves for both $ and @@ appear to be asymptoting to 



184 G. R. Newman and J .  R. Herring 
6.0 I I I I I I I 

_ -  
0 0.03 0.06 0.1 0.3 0.6 1.0 3 .O 

1 

FIauRE 15. Time scale ratio. -, run 1; ---, run 2; ----, run 3; run 4;  
, run 5. 

0.3 I 1 I I I I 1 1 
0.01 0.03 0.06 0.1 0.3 0.6 1.0 3.0 

t 

FIGURE 16. Second-order parameterization for the velocity dissipation equation. -, run 1 ; 
, run 5. run 2 .  run 3 ;  -- ---, 4 .  - 

values in the neighbourhood of $-, $0 E 4. Further, these asymptotic behaviours seem 
independent of the level of R, and of the value of the Prandtl number over the ranges 
of these two quantities spanned by the simulations. In  fact, we find similar asymptotic 
results for $, $0 and r from all of our simulations. Changes in the levels of R, and PA 
appear only to influence the rate a t  which predictions evolve to self preservation. 
In  addition, in all of our simulations, the decays of 2 and @ asymptote nearly to 
power law decays where the decay exponents are nearly unity for both quantities. 
These decay trends for 42 and @ are consistent with the asymptotic approach of $ 
and $0 toward values in the neighbourhood of 4. Indeed, $ and $0 reduce to the 
following simple forms for the case of power law decay for ?(t )  and @ ( t )  : 

$ = - 2(1+ l /nv), $0 = - 2(1+ l/ne), (5.3) 
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FIQTJRE 17. Second-order parameterization for the temperature dissipation equation. -, 
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where n, and nB are the and @power law exponents, respectively, and where these 
forms are valid independent of possible non-zero virtual origins for and @; we 
obtain $, $* = 4.0 upon setting n,,, n, = 1.0 in (5.3). 

The apparent insensitivity of the asymptotic values of r ,  $ and $8 to changes in 
RA and PA implies that these quantities are not influenced by changes in the levels of 
the scalar and mechanical molecular diffusivities in the TFM. This phenomenon, if 
observed, would probably be exhibited in real isotropic turbulence only for cases of 
moderate to large Reynolds and PBclet numbers [consistent with the ideas of non- 
linear (inviscid) velocity and scalar energy cascades]. Partial support of this premise 
may be inferred from the modelling work of Lumley & Newman (1977). These authors 
formulate a second-order closure model for isothermal, anisotropic, homogeneous 
turbulence using the invariant modelling techniques developed by Lumley ( 1970). 
The forms for their parameterized closures are determined in part from requirements 
of realizability (after Schumann 1977), in part from existing homogeneous turbulence 
decay data, and in part from consideration of various analytical results for limiting 
states of homogeneous turbulence. If we specialize their representation for @ to the 
case of isotropic turbulence we obtain 

(5.4) 

where lit( = (?)2/9w) is the turbulence Reynolds number based on the integral length 
scale. The form (5.4) indicates that @ changes by about only 6 %  over the range 
Rt N 10 to Rt + 03, although we note that the asymptotic value, $ = 3.78 as R) -+ 03, 

is extrapolated from existing grid turbulence data which span Rt values only up to 
R) N 40. Consequently, our predicted value for self-similar decay with the TFM, 
$ = 4.0, agrees to within 11 % with the levels of @ appropriate for grid turbulence 
over the observed range for RP 2 10. We now consider the levels of r found in heated 
turbulence data. 

Warhaft & Lumley ( 1978) review the existing empirical data concerning (isotropic) 
heated grid turbulence and present new data from their experimental studies of 

@ = v- + 0.980 exp [ - 2.83/Rj], 
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heated grid turbulence. The scalar contaminant, temperature, behaved passively in 
most of the flows examined. The levels of $ in the data are adequately represented by 
the second-order expression (5.4) and hence in reasonable agreement with the self- 
similar TFM value. The scalar and velocity variance decay data for all of the heated 
grid flows are adequately represented by power law forms so that the time scale ratio 
equals the ratio of the exponents, r = n,/nv. By virtue of the power law representations 
we see that the level of r [and hence the levels of $ and I,+,, from (5.3)] is invariant with 
respect to streamwise position in any flow; however, the level of r varies from approx- 
imately 0.6 to 2.4 among the different data sets. In  addition, the measurements of 
Warhaft & Lumley (1978) suggest that the level of r in thermal grid turbulence may 
be a unique function of the ratio k,,/k, where kv and ke are the wavenumbers correspond- 
ing to the peaks of the three-dimensional velocity and scalar energy spectra. Their 
measurements indicate that the ratio k,/ke remains approximately uniform indepen- 
dent of streamwise position in each of their flows [although both kv and k,  decrease 
with downstream position consistent with the results of Yeh & Van Atta(1973)J 
and Warhaft & Lumley (1978) propose that the invariance of the level of r in a decaying, 
thermal grid turbulence flow may derive from the observed invariance of the ratio 
k,,/ko. Further, the data of Warhaft & Lumley (1978) indicate that the level of r = 1.0 
in scalar grid turbulence occurs when E ( k )  peaks a t  a wavenumber approximately 
25 yo higher than E,(k) .  This result concurs moderately well with the results of Yeh & 
Van Atta (1973), and this difference in the E ( k )  and E,(k)  peak wavenumbers is fairly 
we11 reproduced in our TFM predictions which give r = 1. We note that the normalized 
energy and dissipation spectra obtained by Warhaft & Lumley (1978) (for the case 
of r = 1) at levels of R, and PA comparable to those of Yeh & Van Atta (1973) are in 
fairly good agreement with the corresponding normalized spectra obtained by Yeh & 
Van Atta (1973). Warhaft & Lumley (1978) did not measure transfer spectra or triple 
correlations, however. 

We observe that the grid flows with values of r $. 1 differ from our TFM simulations 
with regard to the behaviour of the time scale ratio (and hence of $,). The empirical 
data indicate that r is invariant with respect to streamwise position over distances 
corresponding to evolutionary periods up to one turbulence decay time (where we 
define the turbulence decay time, r ,  by dr  = s/pddt); whereas in the simulations r 
asymptotes from its initial level to the value r N 1 within this evolutionary period. 
This discrepancy may derive in part from the aforementioned difficulty (caused by 
differences in initial conditions) in assessing to what extent the evolutionary periods 
of the TFM simulations match those of the grid flows. It is possible that the behaviour 
of r (and +,) exhibited in the grid flow data would be better predicted if the theory 
prescriptions could be altered so that the initial spectra profiles more nearly repro- 
duced the initial empirical spectra. On the other hand, it is interesting to interpret 
the results in the light of a possible ‘equilibrium’ decay regime for isotropic scalar 
turbulence (after Newman et al. 1979). 

As noted above, the self-similar TFM result of $ N 4 agrees quite well with existing 
data for R) > 10, and this suggests that the self-similar TFM value of r -N 1 ($, 2: 4) 
may be the appropriate asymptotic (equilibrium) value for decaying isotropic scalar 
turbulence for moderate and large Reynolds and PBclet numbers. The value of r N 1 
for a decaying ‘equilibrium’ flow (which is not intluenced by initial or boundary con- 
ditions) is appealing from the physical viewpoint. That is, it seems plausible (Newman 
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et al. 1979) that cumulative distortions of the scalar field by the velocity field in 
decaying isotropic scalar turbulence would alter the Ee(k) spectrum to a distribution 
consistent with equilibrium decay with the E(k)  spectrum; the large eddy (energy 
containing) length scales of the scalar and velocity field would presumably be 
comparable in this equilibrium regime (i.e. kv/kO N 1) and the time scale ratio 
approximately unity. Our TFM simulation results are consistent with this picture 
of asymptotic equilibrium decay, but the heated grid data evidencing values of r =+ 1 
apparently are not. On the other hand, it is possible that the grid flows were not 
of sufficient streamwise extent for equilibrium decay to be established (i.e. that the 
behaviour of r was everywhere influenced by initial conditions behind grids); although 
one would expect some tendency for evolution toward equilibrium decay to have been 
evidenced in a t  least the longest flows examined (Newman et al. 1979). In  addition, 
we note that the Reynolds numbers of the heated grid flows are fairly low [with the 
exception of the flows of Lin & Lin (1973)) which have quite short streamwise extents]. 
Lumley & Newman (1977) have shown that the rate of return to isotropy of the 
velocity field in homogeneous turbulence without mean shear increases with increasing 
Reynolds number. It is possible that the behaviour of r in heated grid flows may also 
vary with Reynolds number so that an equilibrium level of r 2: 1 might be attained 
fairly rapidly (consistent with the TFM simulations) in a grid flow with large 
Reynolds number. Further grid turbulence experiments might shed light on this 
equilibrium decay issue. 

6. Summary and discussion 
In  this investigation, the test field model (Kraichnan 1971) was applied to the 

study of the decay of isotropic, passive-scalar turbulence. TFM simulation results at  
large Reynolds/P6clet numbers for scalar and velocity dissipation spectra were shown 
to be in excellent agreement with the atmospheric data of Champagne et al. (1977), 
after the intrinsic scale constants in the TFM were adjusted to provide for agreement 
between predicted and empirical one-dimensional energy spectra in the inertial 
wavenumber range. Although the theory does have an adjustable constant, it  does 
yield the correct Batchelor number a t  high Prandtl number, if the constant is chosen 
to give the correct Oboukhov-Corrsin constant. Further, predicted self-similar 
velocity and scalar energy, dissipation and transfer spectra and second- and third- 
order velocity, scalar and velocity-scalar correlations at moderate Reynolds and 
PBclet numbers were shown to provide moderate agreement with the heated grid 
turbulence data of Yeh & Van Atta (1973) (which exhibited near-unity levels of the 
ratio of velocity to scalar time scales, r ) .  In  addition, self-similar decay results from 
the simulations exhibited an asymptotic approach to values approximately unity 
for r and to values about equal to 4.0 for the normalized decay rates of the velocity and 
scalar dissipation rates, $ and $o, respectively. 

The predicted level for @ was shown to agree quite well with levels of $ observed in 
grid turbulence data over the experimental Reynolds number range, RB 2 10. On the 
other hand, the predicted asymptotic approach to $0 = 4.0, r = 1 within one turbu- 
lence decay time was noted to be at  variance with existing heated grid turbulence data 
(in which r + 1) in which $0 and r remain invariant at  their initial values over com- 
parable evolutionary periods. These disparities were discussed in the context of 
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‘equilibrium’ decay of concomitant, isotropic scalar and velocity fields (after Newman 
et al. 1979), and a consistent picture was discussed in which the predicted results for 
+@ and r were viewed as equilibrium decay values, appropriate for moderate and large 
Reynolds and PBclet numbers, which might be observed asymptotically in heated 
grid turbulence flows. It was suggested that a further study with theory prescriptions 
altered so that initiaI spectral forms concur more closeIy with those observed in 
heated grid flows might yield predictions which better reproduce the +, and r behav- 
iours observed in the data. In  addition, we discuss briefly here two alternative 
approaches which might influence agreement between simulations and heated grid 
data. 

As noted, our TFM velocity and scalar spectra and correlation profiles agree 
moderately well with the empirical profiles of Yeh & Van Atta (1973) a t  moderate 
Reynolds and PBclet numbers. On the other hand, these moderate Reynolds number 
simulations were performed with the values of the intrinsic scale factors (g, and g,) 
appropriate for large Reynolds number (near unity Prandtl number) flows. As 
discussed previously, these factors serve to scale the time scales for build-up of the 
scalar and velocity triple moments. It is possible that the triple moment time scales 
in real scalar turbulence are Reynolds number dependent, and thus that good agree- 
ment between self-similar TFM predictions and empirical data over a wide range of 
Reynolds number might be achieved by specifying suitable Reynolds number varia- 
tions for gv and g,. (A Prandtl number dependence may also be appropriate.) However, 
preliminary investigations of this possibility by comparing simulations with the Yeh 
& Van Atta (1973) grid data has not proved unambiguous. We performed two TFM 
simulations of the Yeh & Van Atta (1973) flow employing g, = gv = g with the values 
g = 1.0 and g = 1.5. Our results show that the larger value of g provides for better 
agreement with the data for the energy and dissipation spectra. On the other hand, 
the smaller value yields better agreement between prediction and data for the velocity 
and velocity-scalar triple correlations, and the smaller value creates larger :negative 
peak values in the T(k)  and Te(k) spectra (consistent with increased transfer efioiency 
as noted in Herring & Kraichnan 1972) which may better correspond to the transfer 
in low Reynolds number flows (although the noted difficulties in measuring the 
transfer spectra preclude definitive evaluation of this latter possibility). In  the light of 
these results we chose to employ the established large Reynolds number values for 
g, and ge for the simulation of the Yeh & Van Atta (1973) flow presented in this paper. 
Further model comparisons with new data and with new direct numerical simulation 
results might provide for evaluation of a possible Reynolds number dependence for 
gv and ge. 

A second alternative (after Lesieur & Schertzer 1977) to the approach followed in 
this work concerns alteration of the forms of the E ( k )  and E,(k) spectra utilized to 
initialize the TFM simulations. Lesieur & Schertzer (1977) present results of their 
theoretical study of decaying, isothermal isotropic turbulence in which they investi- 
gate the influence of the form of the initial energy spectrum upon the subsequent 
temporal evolution of the velocity decay. Lesieur & Schertzer (1977) employed an 
eddy-damped quasi-Gaussian model which should provide simulations in qualitative 
agreement with velocity TFM simulations. These authors report that power law 
decays for? with unity exponent values are obtained from simulations with initial 
E ( k )  spectra which are proportional to k a t  small k, and their results indicate that 
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the associated dissipation spectra achieve self-preservation. On the other hand, these 
investigators report that power law decays for ?with values of the exponents greater 
than unity (they obtained exponent values in the range 1-3-1-44) are obtained 
from initial E ( k )  spectra which tend as k8 (s + 1 )  at small k ,  and for these cases 
their results show that the associated dissipation spectra have non-self-preserving 
regions, apparently a t  variance with the self-preserving nature of grid turbulence 
dissipation spectra. 

The results of Lesieur & Schertzer (1977) suggest that a similar study of the scalar 
decay problem might prove interesting. That is, it is possible that asymptotic levels 
of T $I 1 and $o =t= 4.0 might be evidenced in TFM simulations in which the initial 
E ( k )  and E,(k) spectra tend as k8 (s =+= 1 )  at small k .  The scalar dissipation spectra in 
such simulations, however, might well also exhibit non-self-preservation in contra- 
distinction to heated grid data. Consequently, the behaviours of r and $8 exhibited 
in the heated grid data for the cases with r 4 1 might be better reproduced, but at  the 
expense of unfaithful simulation of the dissipation. In  addition, we note that absence 
of self-preservation in simulation results engenders difficulties in comparing predic- 
tion with experiment; because, in the absence of a self-similar mode, one should 
match evolution times between simulation and experiment in order to effect com- 
parison, and this matching is not straightforward. In  the work presented in this paper 
we have employed solely the initial spectral form (3.1) (which tends as k at small k )  
which yields self-preserving spectra in order to facilitate comparison between predic- 
tion and data. However, we note that a future study of the scalar decay problem with 
different initial spectral forms (after Lesieur & Schertzer 1977) might provide input 
regarding the question of evolution toward equilibrium decay in isotropic scalar 
turbulence discussed in the previous section. 

The National Center for Atmospheric Research is sponsored by the National Science 
Foundation. 

Appendix 
We develop here a test field model for an isotropic scalar field in isotropic turbu- 

lence from a Langevin model representation for the scalar equation of motion. The 
direct interaction approximation (DIA) serves as a reference closure for our Langevin 
model. Our development parallels that of Kraichnan (1971), and details omitted here 
may be gleaned from his paper. 

The forced equation of motion for a passive scalar contaminant may be written in 
Fourier space, using the transforms and symbols defined in 5 2, as 

where f (k, t )  is a stochastic driving force. The convolution sum, 

A 

k=P+P 
c s  

spans all allowed (p, q )  such that (k, p, q) form a triangle (k = p + 9). 
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To obtain the DIA equations for the scalar field we first form the equations for the 
ensemble-averaged response Green’s function and the scalar covariance [which are 
obtained from (A l)] and then apply the DIA algorithm (Kraichnan 1959) to these 
equations. With these manipulations we obtain the scalar DIA: 

( ~ + r k 2 ) G ( k , t , t ’ ) + ~ t ~ S l ( k , t , s ) G ( k , s , t ’ ) d s  = 0 (t > t ’), 

with G(k, t’, t ’ )  = 1, G ( k ,  t ,  t ’ )  = 0 (t < t ’ ) ,  

G(k ,  t ,  t ’) = (G(k, t ,  t ’ ) ) ,  (A 2) 
t t 

-m -m 
( i + y k 2 )  O ( k ,  t ,  t ’ )  +I q(k, t, s) O(k ,  s, t ’ )  ds = 1 (f(k, t)f*(k, s)) G(k, t’, s) ds 

+ n - k p  d s s  qp sin2 (4, k) G(k,  t‘, s) U(q, t, s) O(p,  t ,  s) dpdq,  t 2 t’, (A 31 
-m A 

t 

-m 
(:t + 2yk2) O(k ,  t ,  t )  + 2 @(k, t ,  s) O(k,  s, t )  ds = 2 1  (f(k, t)f*(k, s)) G ( k ,  t ,  s) ds 

with 

where the Green’s function, G(k, t ,  s), represents the response of 8(k, t )  to a unit 
perturbation [given byf(k, a)] in wave mode k at time s, where U ( k ,  t ,  t ‘ )  and O(k,  t, t ’ )  
are the modal velocity and scalar variances defined in 3 2, and where the integration 
domain for the magnitudes of the allowed wavenumbers is governed by the above 
triangle condition. The set (A 2)-(A 5) constitutes the Eulerian DIA equations which 
describe the temporal evolution of the scalar modal variances, O ( k ,  t ,  t ’ )  and O ( k ,  t ,  t ) ,  
in isotropic turbulence assuming that the velocity modal variances are known [deter- 
mined for example by the velocity field DIA equations given by Kraichnan (1964)l. 
The DIA turbulence model exhibits a number of desirable consistency properties 
(Kraichnan 1961) and accounts in a fundamental way for both nonlinear scrambling 
of energy and for stochastic relaxation of ensemble averages toward equilibrium. 

The velocity field DIA equations provide fairly good predictions of low Reynolds 
number turbulence (Herring & Kraichnan 1972), but they yield unfaithful predictions 
of the inertial range of large Reynolds number turbulence. This improper behaviour 
of the DIA is attributed (Kraichnan 1964) to the fact that the DIA equations are not 
invariant to random Galilean transformations. Kraichnan (1965) rectified the inertial 
range problem of the DIA by developing the Galilean invariant Lagrangian history 
direct interaction approximation. This model provides good simulation of inertial 
range data. However, the model is quite complex, requiring significant amounts of 
computer time, and we have chosen not to use this statistical model for our predictions. 
Instead, we have utilized a test field model for isotropic scalar turbulence for our 
study of scalar decay. The TFM exhibits the Galilean invariance property, behaves 
properly in the inertial range and does not contain the temporal integrations, which 
are computationally costly, exhibited in the DIA and LHDIA equations. In addition, 
velocity field TFM simulations have been shown (Herring & Kraichnan 1972) to 
compare favourably with LHDIA simulations. 

pq sin2 (q, 4 G(p, t ,  8) V(q, t ,  8) dp dq, (A 5) 
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We develop our scalar TFM from the following Langevin representation of the 
scalar equation of motion; the random forcing is here specified to be white noise in 
time.? 

(A 6) 

where 

We assume that N(q) (a random, isotropic solenoidal vector), 5, w and f are all statistic- 
ally independent of each other and of the initial scalar field, 8(k, 0).  H(k,  p ,  q )  is the 
triple moment scale which we define more explicitly below. 

From (A 6) we find that the Green’s function and time-displaced covariance 
function satisfy 

( ; + r k 2 + T ( k , t ) )  Ge(k,t , t’)  = 0 (t 3 t ‘ ) ,  

( $ + r k 2 + 7 ( k , t )  O(k , t , t ’ )  = 0 (t 3 t’), 1 
(A 9) 

(A 10) 

(A 11) 
Thus, O ( k , t , t ’ )  and Ge(k,t , t‘)  obey the same differential equation and hence are 
proportional to one another (a statement of fluctuation-dissipation theory). Using 
(A 11) we obtain 

Also, from (A 6) we obtain the equation for the modal variance as 

with G,(k, t’, t’) = 1. 

O(k, t , t ’ )  = Ge(k, t , t ’ )  O(k , t ‘ ,  t ’). (A 12) 

(g  + 2yke) O ( k ,  t ,  t )  + 27(k, t )  O(k ,  t ,  t )  

= 2Z(k, t )  -+ 2n pqsin2 (q,  k )  H@, k,  q )  O ( p ,  t ,  t )  dpdq. (A 13) 

Comparing (A 13) with the DIA equation (A 4) [where we now set the initial time in 
(A 4) to zero and where we employ the Langevin model white noise form for the 
forcing function which transforms the integral forcing term to 2Z(k, t ) ]  we observe 
that we reproduce exactly the ‘form’ of the DIA equation with our model scalar 
variance equation if we define 

s, 

Our Langevin equation representation of the scalar equation of motion is modelled after 
a gradient-based, Markovian, Lagrangian history direct interaction scalar field representation 
proposed by Kraichnan ( 1970). 
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We note, however, that the Green’s function for our model system will in general not 
equal the DIA Green’s function. Employing (A 12)  and an analogous Langevin model 
relation for the isotropic velocity field from Kraichnan (197 1) we may write (A 14) 
&8 

Now, following Kraichnan (1971), we define a new time scale (symmetric i np  and k)  
in the light of (A 15) as 

1 

0 
p@, k, = J GJ~,  t ,  8 )  G,(k, t ,  8 )  Ge(p, t ,  8 )  da, 

s, 

(A 16) 

and form a modified equation for @(k ,  t ,  t )  as 

(g + 2yk’) O(k ,  t ,  t )  = 2 2 ( k ,  t )  + 2nk pq sin2 (q, k )  De(k ,p ,  q) U(q, t ,  t )  

x ( [ O @ , t , t ) - @ ( k , t , t ) ] d p d q .  (A 17)  

Equation (A 17) reproduces exactly the form of the DIA equation (A 4) for the case 
of statistically steady scalar and velocity fields, so that the steady-state scalar- 
variance transfer exhibited by the DIA scalar model is reproduced by our Langevin 
scalar covariance equation. We adopt (A 17) as the basis for our TFM closure, 
although we must change the current choice of Green’s functions in (A 16) to ensure 
that the Langevin model equations satisfy invariance under random Galilean 
transformations. D*(p, k ,  q )  is a characteristic time scale for interactions between the 
wave modes k , p ,  q, and it represents the memory effects inherent in the DIA equations 
which result from the temporal integrations. 

To complete the scalar model we note (after Kraichnan 1971) that the scalar gra- 
dient field is identically a compressive field since V x (V8) = 0 for every (x, t ) ,  and thus 
we shall view the scalar-gradient field as a test field.We next associate the Green’s 
function of the compressive velocity test field developed by Kraichnan (1  971) with 
our scalar Green’s function Go, and further associate the solenoidal Green’s function 
of Kraichnan (1971) with the Langevin model velocity Green’s function, G,. If we 
now substitute the compressive and solenoidal test field Green’s function into (A l6),  
after rescaling Kraichnan’s (1971) test field motion equations so that the relaxation 
time for the scalar variance is vC(k) go (with the notation given in 3 2 ) ,  and differentiate 
we obtain 

d q k ,  p ,  q ) p  = 1 - ( g W ( k )  + ?“(P)) + V ( q )  + y(k2  + P 2 )  + W )  De(k, P, q),  (A 18) 

with 

The set (A lo), (A 17) and (A 18) comprise the scalar TFM employed for this work 
which has been given in 9 2. We now record consistency properties of the scalar TFM. 

The scalar TFM equations satisfy invariance to random Galilean transformations 
because of the replacement of the Green’s functions in (A 16) with the solenoidal and 
compressive test field Green’s functions. Further, the test field Green’s functions 
are positive, monotonic decreasing functions of t (Kraichnan 1971) so that (A 16) 
ensures that P ( k ,  p ,  q )  3 0 for every t ;  an essential quality in view of our Langevin 
equation (A 8). In  addition, the scalar TFM may be shown to satisfy conservation of 

De(k ,p ,  qlt = 0)  = O .  
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scalar variance by nonlinear interaction [(3.8)] by forming T,(k) from (A 17) and then 
utilizing both the symmetry in k and p of D*(k, p ,  q )  and the symmetry of the integra- 
tion domain described in 3 3. 

The existence of the model scalar Langevin system ensures that the scalar TFM 
yields realizability of the modal scalar variance, S(k, t ,  t ) .  I n  addition, the scalar TFM 
is consistent with the inviscid equipartitioning behaviour which can be exhibited from 
a truncated wavenumber representation of the scalar equation of motion. We see 
from (A 17) that, with zero forcing and with y = 0, if our TFM system achieves 
O ( k ,  t ,  t )  = constant for every k a t  some t,, then (A 17) ensures O ( k ,  t ,  t )  = constant for 
every t > t, providing the velocity field has also achieved equipartition equilibrium. 
We note further that the forms of the ‘input’ and ‘drain’ terms of the TFM modal 
variance equation, (A 17), are consistent with a tendency for equipartitioning. The 
terms act to drain modal variance from wavenumber regions with excess variance and 
input variance into wavenumbers exhibiting modal variance deficiencies. Finally, we 
note that numerical studies [described by Orzsag (1974)] of isotropic turbulence with 
an eddy-damped Markovian model have shown that the simulated velocity field tends 
towards modal energy equipartition. Since the scalar TFM equation for O ( k ,  t ,  t )  has 
exactly the ‘input’ and ‘ drain’ forms of the Markovian equation for U ( k ,  t ,  t ) ,  we infer 
that the scalar TF M system would exhibit similar equipartitioning behaviour. 
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